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LETTER TO THE EDITOR 
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UK 
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Abstract. Atomic density fluctuations. extending to at least 35 A, have been discovered in a large 
(13824 atom) model of amorphous silicon @Si). This extended-range structural order has been 
found. in the case of a-Si, to arise from second-neighbour correlations preferentially propagating 
atomic-density Ructuations. The period of such low-amplitude. extended-range oscillations in 
atomic density, namely 23.4 in the case of a-Si, is that associated with the position of the first 
s h q  diffraction peak (FSDP). namely 21.9 A-’; indeed, the extended real-space fluctuations for 
r > 10 A contribute almost as significantly to the intensity of the EDP as do the much stronger, 
but less periodic, correlations in lhe range 0-10 A. 

The structure of non-crystalline covalent networks (amorphous solids, glasses and liquids) 
is widely believed to consist of an appreciable degree of chemical short-range order over 
lengths 4 A, possibly some medium-range order (5-20 A), but no order at longer ranges 
[I]. While medium-range order is manifested experimentally by structural features such as 
the first sharp diffraction peak [2] and the Raman ‘boson’ peak [3], their interpretation has 
remained controversial 141. Structural models and simulations have contributed a great deal 
to our understanding of such materials [5,61. but have generally been reshicted to length 
scales -10 A. In this letter we use results from large models of amorphous silicon [7,8] to 
show that interatomic correlations can be discerned over rather greater distances (230 A, 
possibly -60 A) than previously supposed, and that these extended-range correlations are 
directly responsible for the first sharp diffraction peak. The structure of amorphous network 
materials is generally characterized by the pair distribution function g ( r ) ,  which represents 
the atomic number density at a distance r from an origin atom, normalized by the bulk 
number density po. Fourier transformation yields the suucture factor S(Q) ,  where a point 
Q in reciprocal space corresponds to an oscillation of period R in real space as given by 
the simple relationship QR = 2ir [9]. The experimental structure factor of amorphous 
silicon (a-Si), as measured by neutron diffraction [IO], contains a first sharp diffraction 
peak (FSDP) at Q e 1.9 8 - I .  Figure 1 shows the pair distribution function g ( r ) ,  resulting 
from the Fourier transformation of only the FSDP portion of Fortner and Lannin’s structure 
factor for annealed a-Si [lo]. The mean period R of oscillation in g o )  is -3.3 A, as 
expected, when measured over the entire range of ~ 5 5  A. Over shorter ranges the period is 
significantly greater-for example the first peak occurs at 3.9 &confirming that the widely- 
adopted assumption of DebyeScherrer behaviour for the FSDP [ I ,  111 (real-space atomic 
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Figure 1. Pair distribution function g ( r )  corresponding to Fourier tmnsfmmruion of the first 
peak in the experimental srmcture factor, S(Q).  of amorphous silicon, The neutron diffraction 
data of Fonncr and Lannin [IO] for annealed a-Si was smoolhed using B cubic spline with a point 
spacing of 0.001 A-' to enhance the resolution nrtificially. then rmncated below 1.840 A-' a d  
above 2.224 h-', the two Q points where S(Q) = I .  The inset shows an enlargement of the 
g ( r )  curve for larger, which has been displaced vertically for clarity 

density fluctuations of uniform period, decaying exponentially to vanish within "20 A) is 
misleading. 

Figure 2(a) shows the pair distribution function of a 13824 atom model of a-Si generated 
by Holender and Morgan [SI. For r > 10 8, the model g ( r )  shows qualitatively similar 
behaviour to the experimentally-derived data in figure 1, with a mean period of oscillation 
R = 3.4 A over the full range 0-33 8, defined by the size of the model. The weak, extended 
real-space fluctuations for r z 10 A contribute almost as significantly to the intensity of the 
model FSDP [SI as do the much stronger but less periodic correlations in the range 0-10 A. 
W e  note in passing that the pair distribution function of Holender and Morgan's largest, 
110592 atom structure [SI shows well-resolved oscillations in g ( r )  extending to 66 A, but 
the amplitude of the oscillations >33 A is enhanced by a period doubling artefact resulting 
from the annealing procedure; we will thus not consider this structure further. 

g ( r )  can be resolved into separate contributions g n ( r )  due to nth neighbours of the origin 
atom, where n denotes the shortest bond percolation path between the two atoms [12]. By 
definition, the first peak in g ( r )  is entirely due to nearest neighbours, while the second peak 
is dominated, unsurprisingly. by second-neighbour atoms. The third neighbour-specific pair 
distribution, g3(r ) ,  is a broad double peak, reflecting a non-uniform distribution of dihedral 
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angles [4]. The form of the doublet can be related to the ring statistics of the model, as 
shown in figure 2(b). 

Intriguingly, g&-) is a single peak which is considerably narrower than g3( r ) ,  a result 
of the strong inverse correlation between pairs of successive dihedral angles (n  = 0-3, 14) .  
Such directional constraints evidently also occur for more distant neighbours. Table 1 shows 
that the g,,(r) form a well-defined and almost evenly spaced sequence of approximately 
Gaussian distributions for n = 5-13, with very slowly varying widths and intensities. Over 
the intermediate range n = 3-10, the even-n peaks are clearly narrower and more intense 
than the odd-n peaks. The separation between neighbouring (odd-even) peaks is -1.7 A; 
the separation of alternate (even-even or odd-odd) peaks is thus -3.4 A. While the 
positions of the maxima and minima in g ( r )  do not appear to coincide with the gn(r )  peaks, 
the fluctuations in g ( r )  are clearly a consequence of the radial symmetry of successive 
neighbour shells as characterized by the g.(r). The inset to figure 2(u) suggests that one 
might expect such symmetry to extend beyond n = 13, the numerical limit of our quantitative 
neighbour analysis. 

Table 1. Characteristics of the neighbour-specific pair distribution functions g. ( 7 )  for the 13824- 
atom room-temperature model of a-Si 181. WHM is the full width at half maximum of 8.0). 
while r, is the observed peak position, cn is the total number of nth neighbours per atom. defined 
as e, = 4nn) JF r*zn(r) dr where po is the bulk density. The ratio c n / ( c n - ~ q )  thus represents 
the number of nth neighbours as a fraction of the number of atoms bonded to each (n - I)th 
neighbour. 1;. r;, 0' and R denote intensity, peak position, width (standard deviation) and 
correlation coefficient. respectively. for non-linear least-sqms fits of Gaussian distributions to 
gn( r ) .  

n WA r./A c, c " / ~ c " - l c l ~  1; r;lA C*/A R 

I 0.19 2.38 4.02 1.000 5.770(23) 2.385(1) 0.078(1) 0.9964 
2 0.60 3.83 12.07 0.747 1.960(6) 3.831(1) 0.271(1) 0.9982 
3 1.91 5.74 26.84 0.553 0.717(2) 4.667(3) 0.472(1) 0.9996 

4 1.63 6.96 47.96 0.445 0.936(2) 6.961(2) 0.707(2) 0.9984 
5 2.06 8.67 76.28 0.396 0.845(2) 8.601(2) 0.830(2) 0.9990 
6 1.91 10.27 I11.2 0.362 0.851(1) 10.346(1) 0.820(1) 0.9999 
7 2.11 12.12 153.4 0.343 0.809(1) 12.085(1) 0.877(1) 0.9998 
8 2.10 13.80 202.7 0.329 0.799(1) 13.851(1) 0.889(1) 0.9998 
9 2.25 15.69 259.3 0.318 0.771(1) 15.629(1) 0.928(1) 0.9998 
IO 2.24 17.46 323.2 0.310 0.760(1) 17.412(1) 0.945(1) 0.9997 
I I  2.31 19.19 394.6 0.304 0.740(1) 19.212(1) 0.973(1) 0.9998 
I2 2.36 20.97 473.5 0.299 0.728(1) 21.008(1) 0.993(1) 0.9997 
13 2.39 22.78 559.8 0.294 0.715(1) 22.821(1) 1.012(1) 0.9998 

0.871(2) 5.763(2) 0.362(1) 

The source of the extended-range radial density fluctuations for r > 10 A is considered 
in figure 3. The location of an nth neighbour atom, i, at a specified distance ri from 
the origin, influences g ( r )  for r > ri ,  because some of the (An)th neighbours of i are 
(n + An)th neighbours of the origin atom, with a shortest path that includes i. Figure 3 
shows that An = 1 correlations reflect a rather broad range of radiul separations between 
nearest neighbours, because of the variation of possible orientations of individual bonds 
which is imposed by tetrahedral coordination. The abundance of 6- and 7-membered rings, 
and the concomitant variability in the dihedral angle, results in a wide range of An = 3 
separations, while the range of separations for An > 3 increases due to an accumulation of 
the inherent variation in lengths of individual bonds. Hence, the significant contribution to 
the radial atomic density by neighbours of i is due to An = 2 correlations, and occurs at r; 
t 3.4 A. Thus we may predict that an existing feature of g ( r )  at r; (i.e. a peak or trough) 
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Figure 2. Pair distribution function g(r) of a 13824-alom room-temperature model of a-Si [SI. 
resolved into contributions g.(r)  due IO nth neighbour atoms. Each atom is classified as an nth 
neighbur, where n is lhe minimum number of bonds bctwcen it and the origin atom (note that 
all p?in of atoms which cantribute IO the first peak in g ( r ) .  i.e. all pain separated by less than 
3.0 A. are defined as being bonded). For agiven origin, each atom thus has a unique value of n, 
hence g ( r )  = En g.(r);  & ( r )  and g ( r )  are then averaged over ai1 otgin atoms. (a)  Total g ( r )  
and g n ( r ) .  n = 1-13. The inset shows a projected top view of a 12 A thick 'slice' through the 
model. The section contains 2476 atoms, including an origin atom at the centre. Odd neighbours 
(n = I + 25) of lhe origin atom are drawn in grey, even neighbours n = 2 + 26) are black. 
Relative to the scale of lhe projection, the Si atoms are depicted as being 50mewhat smaller 
than their true covalent radii. (b) gn(r) ,  n = 3 4 .  is resolved into contributions due 
to third neighbours located in "embered rings. m = 6-1 1, using the shortest path (SP) ring 
formalism [26]. Note that five-memLwed rings are also quite abundant-24% of all SP rings in 
this model-but by definition do not contain any third neighbours. An 'open' path corresponds 
to the u s e  where the origin and third neighbour aloms do not share a common SP ring. The 
inset depicts a simple example of a configuntion where lhe origins A and D generate the Same 
fourth neighbour distance. AD, via two different third neighbour distances. BD and AC (AC'). 

will be propagated with a period ~ 3 . 4  A, irrespective of the exact positions of the g.(r) 
peaks. 

The first peak in the structure factor of a-Si at Q = 1.9 A-' [ lo ]  is thus associated with 
extended-range atomic density fluctuations, of approximately radial symmetry about each 
atom, as seen in figure 2(u). Similar conclusions have been drawn previously by Cervinka 
et nl [13] for abstract two-dimensional networks. We have described the source of these 
atomic density fluctuations in terms of angular constraints; an equally valid, complementary 
depiction is of a chemical-ordered packing of atoms and interatomic 'voids' [ 14-16], a topic 
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Figure 2. continued 

which will be discussed fully in a future publication. 
A first sharp diffraction peak (FSDP) is also observed in the more archetypal 

oxide/chalcogenide glasses and melts [2,4]. For example, the structure of silica glass can 
be well approximated by 'decorating' a-Si with oxygen atoms [ 171; from the ratio of S i S i  
separations for the two materials, one may correctly predict the existence of an FSDP for 
Si02 at Q = 1.5 A-' [18]. Similar scaling approximations may be applied to the FSDPS 
of other AX2 glasses such as GeSq or BeFz [21. By analogy with a-Si, one would thus 
expect the FSDP of A X 2  systems to be due to A?I = 4 correlations (A-X-A-X-A, X-A- 
X-A-X). We have found that this is true of the FSDP in Feuston and Garofalini's model of 
Si02 glass [19], although the small size (648) atoms obviously reduces the contribution of 
extended-range correlations to the FSDP, and hence limits the scope for agreement between 
calculated and experimental S ( Q ) .  Interestingly, early x-ray diffraction measurements on 
silica glass revealed fine structure in g ( r )  to at least 20 A, which at the time was attributed 
to tridymite-like microclystallinity [ZO]. 

It thus seems likely that extended low-amplitude periodicity in g ( r )  is a structural 
characteristic common to many amorphous materials. In a single-component tetrahedral 
network such as a-Si, the extended-range structure results from An = 2 correlations, which 
are defined by the short-range order, n < 2. In multicomponent systems it is the medium- 
range order which is propagated (e.g. An = 4 in Si02 and related glasses). While this 
letter has concentrated on affirming the presence of extended-range structure in tetrahedral 
networks of high connectivity, its existence is also anticipated in amorphous solids with 
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Figure 3. Density distribution of atoms j in the vicinity of an atom i located B Rxed distance 
r; from an origin atom 0. as a function of 6 = rj - r i ,  namely the difference in the dismces 
of i and j from the origin. pn.(d) is represented as the number density per atom i. while 0; 
denotes the bulk number density. In this example. aloms i are chosen 50 th t  r ,  = 14.0010.05 A. 
Lalxlling i as an nth neighbour of 0, where n is varinble (in chis case approximately 7% n = 
7. 78% n = 8 and 15% n = 9, see figure 2(b)), distributions are shown for those j which 
are (n t Ankh neighbours of 0. An = 1-4. The atoms j are thus respective subsets of the 
first, second. third and fourth neighbours of i. The curves were evaluated over all origin atoms 
0 for Hotender and Morgan's 13824-xom room-temperature model of *-Si [a]. The dashed 
vertical lines represent the widths (FwHM) of the dismbutions p h ( S ) .  An = 1.2. The variation 
of PA,@) with r, ( > I O  A) is weak but complex (Uhlhen and Elliott, in preparation). The 
inset schematic is an illusmlive example of how the tetrahedral symmetry about each atom (in 
this case j l ) .  combined with the fact t iut  shortst percolation paths become roughly linear with 
increasing n ,  imposes a greater directional constrain1 (and hence greater constraint on 6 )  for An 
= 2 pairs (i - j,) than for An = I pain (i - j t ) ,  

chain-like (SiSel, AgI-AgPO,) or sheet-like &O3) structures, and indeed in liquids with 
FSDPS such as As~Se3 or GeSez [21,22]. In such materials, extended-range order is thus 
envisaged to originate not from pseudocrystalline fragments [a], randomly packed clusters 
[24] or layers [25], but simply from the topology of the random network. 

The authors are very grateful to J M Holender and G J Morgan, for providing coordinates 
of a-Si models, and also to S H Garofalini, for supplying a 3 0 2  model coordinates. It is a 
pleasure to acknowledge the financial assistance of the EC and the Isaac Newton Trust of 
Trinity College, Cambridge. 
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